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The evolution of three-dimensional disturbances in an incompressible mixing layer in 
an inviscid fluid is investigated as an initial-value problem. A Green’s function 
approach is used to obtain a general space-time solution to the problem using a 
piecewise linear model for the basic flow, thereby making it possible to determine 
complete and closed-form analytical expressions for the variables with arbitrary input. 
Structure, kinetic energy, vorticity, and the evolution of material particles can be 
ascertained in detail. Moreover, these solutions represent the full three-dimensional 
disturbances that can grow exponentially or algebraically in time. For large time, the 
behaviour of these disturbances is dominated by the exponentially increasing discrete 
modes. For the early time, the behaviour is controlled by the algebraic variation due 
to the continuous spectrum. Contrary to Squire’s theorem for normal mode analysis, 
the early-time behaviour indicates growth at comparable rates for all values of the 
wavenumbers and the initial growth of these disturbances is shown to rapidly increase. 
In particular, the disturbance kinetic energy can rise to a level approximately ten times 
its initial value before the exponentially growing normal mode prevails. As a result, the 
transient behaviour can trigger the roll-up of the mixing layer and its development into 
the well-known pattern that has been observed experimentally. 

1. Introduction 
Early transition from laminar to turbulent flow begins with the instability of a flow. 

To study such an event, the basic flow is superimposed with disturbances where their 
growth behaviour determines the instability. To analyse the complete transient and 
asymptotic state of a three-dimensional disturbance, the solution to the initial-value 
problem that models the temporal evolution of the disturbances must be obtained. In 
this work, the initial-value problem for an unbounded inviscid incompressible 
piecewise linear mixing layer (figure 1) is solved using a modification of the analytical 
method described by Criminale & Drazin (1990) and used by Criminale, Long & Zhu 
(1991). 

The asymptotic behaviour of disturbances in many flows has been studied in great 
detail by normal mode analysis (Lin 1955; Betchov & Criminale 1967; Drazin & Reid 
1981). The classical linear stability theory predicts that a given basic flow is unstable 
if its corresponding linearized equations have at least one mode (discrete mode) that 
grows exponentially in time. In contrast to this, recent work has shown that instability 
of flows can also be due to the transient growth of disturbances (Farrell 1982, 1988; 
Criminale & Drazin 1990; Criminale et al. 1991 ; Reddy, Schmid & Henningson 1991) 
and, it will be seen that this omission is critical. The existence of the continuous 
spectrum in initial-value problems has long been recognized but simply not emphasized 
and details for any problem are lacking (cf. Drazin & Reid 1981). 
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FIGURE 1. Piecewise linear model of mixing layer. 

In principle, in the normal mode analysis, a disturbance is expressed as a 
superposition of modes of various wavelengths where each mode is a travelling wave 
solution that can grow or decay exponentially in time. This is properly done if the set 
of normal modes is complete. Unfortunately, all normal modes for the mixing-layer 
problem do not form a complete discrete spectrum and an arbitrary disturbance cannot 
be decomposed into such modes alone. To complete the set the continuous spectrum 
must be added. 

For the classical linear stability theory only infinitesimal disturbances are admitted 
so that the normal mode in the discrete spectrum with the fastest exponential growth 
rate can be identified to dominate the asymptotic behaviour of the disturbances. 
However, even here, this theory cannot predict the transient behaviour of the 
disturbances because it depends on the decaying as well as the growing normal modes 
of the discrete spectrum as well as the missing continuous spectrum. 

Classical linear stability theory has been used extensively in an attempt to describe 
the two-dimensional primary instability of the mixing layer but it fails to describe the 
three-dimensional secondary instability that leads to counter-rotating streamwise 
vortices that have been observed in experiments (Breidenthal 1981; Bernal & Roshko 
1986; Lasheras & Choi 1988) and numerical simulations (Metcalfe et al. 1987; Ashurst 
& Meiburg 1988). The observed secondary coherent structure of streamwise vortices is 
periodic in the spanwise direction with larger wavenumbers than the range of growing 
normal modes predicts. 

Realistic disturbances in a flow may not arise from the truly infinitesimal amplitude 
assumed by the classical linear theory; neither do three-dimensional disturbances wait 
until two-dimensional equilibrium is established before they enter the dynamics (as 
considered by e.g. Pierrehumbert & Widnall 1982). The possibility that nonlinearity 
may become significant long before the normal mode components dominate the 
solution gives special importance to the initial value problem. 

For the three-dimensional problem, equations governing the amplitudes of the 
transverse velocity and vorticity components are considered and are obtained by 
Fourier transforms. In this case, use of Squire's theorem could be incorrect because the 
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theorem does not cover the dynamical behaviour in the equation that governs the 
Fourier amplitude of the transverse vorticity component and is not valid for non- 
separable normal modes or for the continuous spectrum. Contrary to Squire’s 
theorem, it will be shown that the small-time or transient behaviour for the 
streamwise-spanwise periodic disturbance grows at a comparable rate for all values of 
the wavenumber and the initial growth rate of this disturbance rapidly increases. 

For initial conditions that are periodic in the streamwise-spanwise plane, the inverse 
Fourier transform can be made to obtain complete closed-form solutions in the 
physical coordinate space. With these solutions, the corresponding transient and 
asymptotic behaviours of the disturbances from the velocity and vorticity fields as well 
as the kinetic energy are analysed in detail. Interesting findings include the existence of 
algebraic growth for both transient and asymptotic states (because the fluid is taken as 
inviscid) when the initial disturbance is independent of the streamwise variable or the 
initial wavenumber magnitude is equal to an upper bound known as the cut-off value. 
Exponential growth can exist only if the initial wavenumber magnitude is smaller than 
the cut-off value. The exponentially growing behaviour is in agreement with the normal 
modes found from the discrete spectrum. The growth rates of the kinetic energy for all 
cases (including both algebraic and exponential growth) in the transient period are 
rapidly changing and amplitudes reach a level approximately ten times their initial 
values within almost the same time interval. 

The evolution of material particles based on the particle path formulation from the 
Lagrangian viewpoint is investigated as well by integrating directly the velocity 
obtained in the analysis. The sequence of plots at different times for the particle 
positions reveal that an algebraically growing disturbance can trigger roll-up of the 
mixing layer as well as an unstable normal mode. Also, for the initial disturbance with 
a double mode (streamwise and spanwise dependence), the developed structure of the 
material particles has undulant surfaces which are periodic in both the streamwise and 
the spanwise directions and this is compatible with experiments. 

The application of the Green’s function to the streamwise-spanwise periodic initial 
disturbance with families of symmetric and asymmetric transverse distributions for the 
initial transverse velocity component is also given. It is found that the growth rate of 
the disturbance for the asymmetric case is greater than that for the symmetric one in 
the transient period and is very sensitive to three-dimensionality. 

2. The problem 
2.1. Experimental observations 

The growth of disturbances in the laminar mixing layer indicates instabilities of the 
flow and certain disturbances lead to eventual roll-up of the layer. From experimental 
observations, the roll-up of the layer occurs even if no disturbance is introduced into 
the flow. Evidently, the roll-up structure is also observed in the turbulent mixing layer, 
as noted by the large-scale or coherent structure displayed in the revealing shadowgraph 
taken by Brown & Roshko (1974). This photograph, which also appears in Van Dyke 
(1982), shows a large-scale two-dimensional roll-up of the layer that exists throughout 
the mixed fluid region. This two-dimensional roll-up structure is known as the primary 
structure and is widely accepted to be the result of the Kelvin-Helmholtz instability 
mechanism that is based on normal mode analysis for the simplest mathematical model 
of the mixing layer using a zero-thickness vortex sheet. 

Another shadowgraph that appears in Van Dyke (1982) was taken by Konrad 
(1976). This plane view of a mixing layer reveals periodically distributed streamwise 
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streaks in the braided regions connecting the large-scale rollers of the spanwise vortex 
tubes. Breidenthal (1981) observed a spanwise sinuous ‘wiggle’ which was believed to 
play an important role in introducing streamwise vortices and small-scale motions in 
the mixing layer. Later Bernal & Roshko (1986) presented evidence of three- 
dimensional coherent structure in the mixing layer. Here, mushroom-shaped features 
were found in the perpendicular cross-sectional view of the flow direction at some fixed 
downstream position. Such mushroom-shaped features, known as the secondary 
structure, represent the counter-rotating streamwise vortices that are spanwise periodic 
with wavelengths smaller than that of the streamwise wavelength of the primary 
structure. It should be noted that this observation cannot be reconciled by classical 
linear stability theory, which predicts that small wavelength disturbances do not grow. 

Ho & Huang (1982) and Oster & Wygnanski (1982) investigated the effects of two- 
dimensional small-amplitude disturbances generated artificially in the mixing layer 
behind a splitter plate and concluded that the primary large-scale structure of the 
mixing layer is very sensitive to small-amplitude periodic disturbances. The frequencies 
and amplitudes of the disturbances also played important roles in manipulating the 
spreading rate of the layer. 

Artificially generated three-dimensional disturbances in the mixing layer have been 
further studied in some detail by Lasheras & Choi (1988). Periodic disturbances in the 
spanwise direction were created by modifying the trailing edge of the splitter plate to 
give a sinusoidal indentation and it was observed that one origin of the secondary 
coherent structure was the creation of a transverse vorticity component on the indented 
splitter plate. As it travels downstream, the transverse vorticity component tilts into the 
streamwise direction owing to the global shear of the mixing layer and the structure 
then emerges. 

2.2. Numerical simulation 

Direct numerical simulations, such as those of Lin & Corcos (1984), Metcalfe et al. 
(1987), Ashurst & Meiburg (1988) and Rogers & Moser (1989) have been used to 
study the details of the coherent structure observed experimentally. Instead of 
simulating the spatial developing mixing layer behind a splitter plate, these approaches 
assume periodic solutions in the streamwise and spanwise directions of the flow, and 
the evolution of the flow is traced in time. Periodic inputs such as this also permits 
dropping of the boundary conditions in the streamwise and spanwise directions, 
greatly simplifying the numerical scheme. 

The results from the numerical simulation of the temporal evolution of the mixing 
layer confirm that the experimentally observed large-scale structure is dynamically 
sensitive to small disturbances. For example, on initializing the flow field with the 
steady-state mean flow (normally a hyperbolic tangent profile) and appropriate 
streamwise-periodic two-dimensional disturbances, the contour plot of the spanwise 
vorticity in the mixing layer shows roll-up and a pairing of vortices. This is the primary 
structure experimentally observed. 

On initializing the flow field with the mean flow and three-dimensional periodic 
disturbances in the streamwise and spanwise directions the mixing layer can evolve into 
pairs of counter-rotating streamwise vortices. However, the spanwise wavenumber 
could be large and therefore does not agree with the prediction of the classical linear 
stability theory in that such a large-wavenumber disturbance does not grow. 

2.3. Analytical solutions 
Consider the basic parallel flow in the streamwise x-direction with the velocity 
U = (U(y) ,  0,O). A normal mode disturbance is a separable solution and a travelling 
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wave with an amplitude that depends only on y and is represented as a sum of modes 
given as 

1 9  (2.1) 

where P(y) is a complex vector amplitude function, a is the real wavenumber in the x- 
direction, y is the real wavenumber in the z-direction, and w is the complex frequency. 
For instability, the imaginary part of w must be positive. 

Perhaps the first unbounded flow stability problem was the one posed and solved by 
Kelvin (1871) where he considered incompressible flow in an inviscid fluid with a 
discontinuous velocity profile indicating that two streams are separated by a vortex 
sheet of zero thickness. The instability result found for this model has become known 
as Kelvin-Helmholtz shear-layer instability. It remains the most popular analytical 
result used as a theoretical explanation for the primary instability of the mixing layer. 

(2.2) 

where U, is the value for y > 0; U, for y < 0. This flow is always unstable because one 
wi is positive for any a > 0 since there is no lengthscale in this simple model. However, 
for a mixing-layer model with finite thickness, such as the hyperbolic tangent profile, 
there is a cut-off value of the wavenumber a where the flow is neutrally stable. A 
growing normal mode exists only if the value of a is smaller than this value (Michalke 
1964). 

A better model for the basic flow of the mixing layer was proposed by Rayleigh 
(1894) where the velocity profile was taken as a piecewise linear function ofy as shown 
graphically in figure 1. In non-dimensional variables (detailed non-dimensionalization 
is given in the next section), 

= Re {ti( y )  ei(as+Yz-wt) 

The resultant eigenfrequencies of the normal modes for this flow are 

w = fa( U,  + U,) j ,  iia( U,  - U,), 

1, 1 < Y  

U(y )  = y ,  -1 < y <  1 (2.3) { -1, y<-1 .  

This is an improvement over the Kelvin-Helmholtz model because (2.3) has a finite 
thickness and is a close approximation to that computed by Lock (1951) for the 
continuous tanh y .  Also, the normal mode solutions of this model are qualitatively the 
same as the continuous shear-layer profile with the complex eigenfrequencies being 
given by 

(2.4) 

where di = (az + y2)l/' and $ = tan-' (?/a). Thus, there are two normal modes for a 
given d in the interval 0 < d < d, x 0.64 corresponding to wt 2 0. The flow is unstable, 
and the growing mode with d z 0.4 has the largest growth rate. The flow is neutrally 
stable if d = d, (the short-wave cut-off) and there is only one eigenfrequency, w = 0. 
This result is qualitatively the same as for the tanhy profile but, unlike the continuous 
profile result which has no normal mode solutions for di greater than its short-wave cut- 
off, the piecewise linear profile (2.3) has two neutrally stable normal modes for oi 2 di, 
(wi = 0) in this idealization. 

Classical linear stability theory based on normal mode analysis provides intuitively 
sensible results. However, it fails to describe the three-dimensional secondary instability 
that leads to the counter-rotating streamwise vortices observed in experiments and 
numerical simulations. The observed secondary coherent structure of streamwise 
vortices is periodic in the spanwise direction with larger wavenumbers than the range 
of growing normal modes. 

w = +(a/2d)[(1 -2d)2-e--40i]1/2 = +fcos$[(l -2d)2-e--4z]1/2, 
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The classical theory predicts that a given basic flow is unstable if its corresponding 
linearized equations have at least one mode (discrete mode) that grows exponentially 
in time. But (2.1) requires a knowledge of all modes at time t = 0 in order to prescribe 
an arbitrary disturbance. It turns out that the spectrum of the discrete modes is not 
complete and thus u' cannot be represented initially as a superposition of discrete 
modes alone. However, the spectrum of the normal modes can be made complete by 
including the continuous spectrum of the eigenvalue problem. 

Case (1960, 1961) considered the initial value problem for certain parallel flows in 
inviscid incompressible flow using a Laplace transform in time and a Fourier transform 
in space. The Laplace integral solution can be decomposed into a sum of the discrete 
normal modes by the method of residues plus the integral with an integrand that has 
no poles in the domain of interest. Essentially, this solution combines both the discrete 
normal and continuous modes. For plane Couette flow, there are no normal modes and 
the asymptotic behaviour of the continuous mode is t-' as t + co for an inviscidjuid 
(see also Criminale et al. 1991). 

Lin (1961) reconciled the differences between the method of normal modes and the 
initial-value presentation of Case. Theoretically, the Laplace integral representation of 
the solution can be decomposed into an infinite series of normal modes by the method 
of residues, and the two approaches are essentially equivalent. Any contradiction 
between the results of the two methods can be avoided by keeping in mind the 
following facts. A normal mode in the inviscid theory may not be the limit of a normal 
mode in the viscous theory, and a normal mode in the viscous theory may not have an 
inviscid limit. In short, a lack of direct correspondence between the inviscid normal 
modes and the inviscid limit of the viscous one can occur. Also, there are exponentially 
damped normal modes that may play an important role in the transition process, and 
the initial value theory has not yet been fully exploited to study this type of disturbance. 
For example, it has been shown that a superposition of damped normal modes in plane 
Poiseuille flow could lead to transient growth of the disturbance energy by a factor of 
approximately 37 (Reddy et al. 1991) and is attributed to multiple eigenvalues in such 
a sensitive system with non-orthogonal eigenfunctions rather than the continuous 
spectrum. 

Although the instability of the mixing layer is essentially that of an inviscid fluid, 
viscous effects play an important role in the transition to small scales (Ho & Huerre 
1984). Esch (1957) and Balsa (1987) studied the viscous effects on the growing 
disturbances for the basic flow (2.3). It was found that, at large Reynolds numbers, 
results are virtually identical with the inviscid results. However, for the tanh y profile, 
the two eigenvalues are complex conjugates of each other for the Orr-Sommerfeld 
equation with large Reynolds numbers and all wavenumbers. The eigenvalues for the 
inviscid problem are complex conjugates for wavenumbers that are less than the cut- 
off value; for wavenumbers greater than the cut-off value, the eigenvalue problem has 
no solution (cf. Betchov & Criminale 1967). This becomes a moot point because, with 
viscous effects, the basic flow should be treated as non-parallel. For this work, only the 
inviscid problem and a parallel basic flow for which the analytical solution is 
determined is considered. 

Realistic disturbances in a flow may not arise from the truly infinitesimal amplitude 
assumed by the classical linear theory and three-dimensional disturbances may not 
wait until there is a two-dimensional equilibrium to be established before they enter the 
dynamics. Although the exponential growth behaviour found from the discrete 
spectrum dominates the behaviour of disturbances at large time, other behaviour may 
be relevant at small time. This other behaviour (e.g. algebraic growth) that temporarily 
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dominates the exponential growth could lead to strong enough nonlinearity to cause 
the breakdown of the flow in the early period. This suggestion was put forth by Farrell 
(1982) and Criminale & Drazin (1990). The transient behaviour of disturbances 
depends on the continuous spectrum as well as the growing and damped normal 
modes. The possibility that nonlinearity may become significant long before the 
normal mode components dominate the solution, gives special importance to the 
initial-value problem. 

The main goal here is to find the full and complete solutions of the initial-value 
problem for the unbounded inviscid incompressible piecewise linear shear flow. 
Although the result is only approximate for the physical problem, it serves as a good 
model for a more general continuous shear-layer profile (such as tanhy). Normal 
modes are successful in approximating the exponential growth rate of the continuous 
profile where the results here allow for closed-form analytical solutions and 
completeness. The two-dimensional version of this problem with a vortex dipole initial 
condition was investigated by Balsa (1988) but only the long-time behaviour of the 
solution by asymptotic analysis was presented. This problem is three-dimensional and 
attention is focused on the transient behaviour of the solution as well as its asymptotic 
fate. 

3. The initial-value problem 

Neglecting any body force, the Euler equations are 
3.1. Linearized equations 

v - u  = 0, 

p DulDt = - v p ,  

where the velocity field u = (u, v, w)  and the pressure p are the unknowns and functions 
of (x ,  y ,  z ;  t ) ;  p is the constant density. 

The basic velocity field modelling the mixing layer is considered to be a parallel flow, 

Z.4 = U(y)e,, 

where el = (1 , 0,O) and U( y )  is as shown in figure 1, or 

uo, H < Y  

U ( y ) =  C T ~ ,  - H e y  < H I -Uo,  y < - H .  

Non-dimensional variables are defined as 

Equations (3.1) and (3.2) become 

(3.3) 
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where the asterisk is dropped from all variables and the basic velocity is as given in 
(2.3). On introducing a disturbance velocity and pressure, we write the total velocity 
and pressure as 

where E is a smail-amplitude parameter. After substituting into the Euler equations and 
collecting terms of order 6 the linearized equations governing inviscid three-dimensional 
disturbances are obtained. By dropping the prime from all disturbance variables, the 
linearized equations are 

au  av aw 
ax ay a2 
-+-+- = 0, 

-+ au u - + - v  au dU = -- aP 
at ax dy ax’ (3.7) 

(3.9) 

A convenient form of the governing equations may be obtained by taking the 
divergence of (3.7)-(3.9) to obtain 

v2p = - 2u‘ avlax, (3.10) 

where U’ = dU(y)/dy and V 2  is the three-dimensional Laplace operator. Then, 
combining (3.10) with (3.8) the result is 

( a p t )  V ~ V  + u(a/ax)  V ~ V  = u” avlax. (3.11) 

Equations (3.1 I), (3.10), (3.7) and (3.9) form a new set of equations. Once the solution 
for v is found, (3.10) can be used f o r p ;  (3.7) and (3.9) determine u and w respectively 
and the problem is complete. 

Since the disturbances must be bounded at infinity, v , u , w  are bounded as 
x ,  y,z++ co. The linearized equations (3.7), (3.9), (3.10) and (3.11) together with 
arbitrary initial conditions at t = 0 form the initial-value problem. 

3.2. Moving coordinates and Fourier transforms 
Further reduction of the governing equations is made by changing the independent 
variables. Let 

so that 

Under this transformation, the governing equations become 

< = X - U t ,  7 = y ,  C = Z ,  T = t ,  

and 4 5 7 ,  C; T )  = &Y, z ;  0, p ( 5 , 7 , 6 ;  T )  = p ( x ,  Y ,  2 ;  0- 

( a / d T ) V 2 ~  = 0, 

v 2 p  = - 2u’ avlat ,  

au/aT+ U’V = -app/ag, 

aw/aT = - app/aC, 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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with the basic flow 
1 ,  1 < 7  

Y(7) = 7, - 1 < 7 < 1 r - 1 ,  7 < - 1 .  

The Laplace operator in the moving coordinates is 

39 

(3.16) 

This transformation is known as the convected coordinate transformation and has 
been used by Kelvin (1887), Orr (1907a, b)  and Tung (1983) in earlier work. 

To solve the set of equations (3.12)-(3.15), a two-dimensional Fourier transform, 
defined by 

v ' (a ;v ;y ;  T )  = u( t ,y ,g ,  T)ei(a5+Ygdtdg Ssrm 
is used. The governing equations now become 

(a/aT) V2v' = 0, (3.17) 

V2p = 2ia~ ' i i ,  (3.18) 

au'/aT+ U'v' = iap, (3.19) 

au;/aT = iyp, (3.20) 

with V2 = a2/ar2+2iaU'Ta/a7- ~ ~ ~ ~ ~ a ~ - d i ~ .  

On introducing polar variables, 

di2 = a2 + y 2 ,  # = tan-'(y/a), 
du" = au'+ yu;, 26 = -yu'+au;, 

(3.19) and (3.20) become 
aii/aT = i&$ - cos # U'v', 

aG/aT = sin #U'v'. 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

From the continuity equation, it can be shown that u" depends on v' alone and, once 
the solution for v' is found, G is determined from (3.24). Physically, G is proportional 
to the transverse vorticity component, by. The two quantities u" and G, in terms of v' 
and d,, are 

u"(a;7;y;  T) = -(i/di)(a/arl+idicos#U'T)v', (3.25) 

G ( ~ ; T ; Y ;  T )  = (i/di)b,, (3.26) 

where d, = -iyu'+iaMj or 52, = au/ag-aw/ag in real space. On solving for u' and M; 
from (3.22) in terms of 11 and G and eliminating u" using (3.25), 

= -(i/di)(cos#(a/all-iacos~~'~)ii-sin#b,}, (3.27) 

M; = - (i/di){sin #(a/a7 -idicos ~ u ' T )  c-tcos $by}. (3.28) 

The expression for j in terms of v' may be obtained by eliminating u' and G in (3.19) and 
(3.20) using (3.27) and (3.28). This results in 

(3.29) 
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With the solutions for I5 and si, found, (3.27), (3.28) and (3.29) can be used to obtain 
the three unknowns u', @ and 9. Therefore, the problem is reduced to solving the two 
differential equations that govern 6 and SZ,,  

(a/aT) 926 = 0, (3.30) 

asi,/aT = id sin #U'6. (3.3 1) 

Classical linear stability theory assumes that u and all other dependent variables are 
travelling waves and are separable solutions. This means that the Fourier amplitudes 
are either exponentially growing, decaying, oscillatory or time independent. Based on 
the travelling wave solution, Squire's theorem can be applied to obtain the solution for 
a three-dimensional problem from two-dimensional data (q5 = 0). However, Squire's 
theorem does not cover the dynamical behaviour governed by equation (3.3 1) (nor 
non-separable solutions) and the interpretation of these results could be totally wrong. 
For example, if the disturbance is streamwise iedependent (a = 0), then ri is independent 
of T and, integrating (3.31), the solution for S Z ,  indicates linear growth in T. Thus, for 
a three-dimensional problem, both (3.30) and (3.3 1)  must be solved completely. 

In each layer corresponding to 7 > 1 ,  - 1 < 7 < 1, 7 < - 1, the governing equation 
(3.30) for v' can be integrated with respect to T and the result is 

V2v' (a ;7;y ;  T) = ViI5(a;7;y;O).  (3.32) 

where v; = a2/a72-d2. 

3.3. Green's function 

The solution of a Green's function that satisfies 

(3.33) 

(3.34) 

is sought for the system. This Green's function can then be used to construct the 
solution to the problem (3.32) by the following integral : 

00 

fi(a ; yo ; y ; 0) 6(7 ; ?lo) dye. v' = I, 
Equation (3.33) for the external layers 171 > 1 is 

{a2/ar2 - d2} d = s(7 - 
and, for 7 =k yo, is 

The solutions are 
{@/a7 + iaU'T)2 - &;"} 6 = 0. 

C+ = e-iaU'T?i (A,e-Eq+A2eEq), 7 > 
zI- = e-iaU'Tg (B,e-"q+ B,e"), 7 < qo. 

Applying the two conditions for the Green's problem (3.33), 

d = (  (3.35) 
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with (3.35), results in 
( A ,  - B,) e-'?o+ (A ,  - B,) e"l0 = 0, 

- (2  + iaU'T)(A, - B,) e-OiT0+ (di-iaU'T)(A, - B,) edTo = eiaU'Tq. 

Then, solving for A ,  - B, and A ,  - B, gives 

A - B, = - (1 /24  eE?o+ia"'TTo, A ,  - B2 = ( 1 / 2 4  e-ETo+iaU'TTo. 

After eliminating A ,  and B, in (3.35), 

41 

= 61T-0, 
which implies that, at T = 0, 

B(0) = C(0) = 0. (3.40) 

To determine the full forms for B and C for all values of T, matching conditions must 
be used. In general, A ,  B, C and D depend on T, a, and y. 

3.4. Matching conditions 
Physical conditions require that the displacement of all fluid particles is continuous at 
the interfaces q = k 1. When linearized, this is tantamount to the transverse velocity 
component being continuous at the two interfaces. Continuity of the pressure is also 
required from dynamic considerations. Inspection of the original equation of the 
linearized set, (3.8), changing to moving coordinates and taking the two-dimensional 
Fourier transforms gives 

This equation can be rewritten as 

a q a T  = +/ar +iaU'T)y. 

(a/aq) (eiauTp3 = -eiaUT aa/aT. 

Integrating in the 7-direction across r0 yields 
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Thus, if 6 and U are continuous at yo, then the right-hand side vanishes as e+ 0. As a 
consequence, p must be continuous at yo. 

The four matching conditions that determine A ,  B, C and D are 

( ~ l - f i z ) I V = ~ = o ~  (6Z-6JT,-1 = 0, ($l-$JIV-l = 0, ($2-$&17=l = 0. (3.41) 
The expression for p' used for the matching conditions is in terms of 6 and is given by 
(3.29) or 

I i a a a  .=--[-( &2 aT -+iaU'T6 ay ) i-iaU'6 ] . (3.42) 

Substituting the general solution G' (3.38) for i5 and (3.42) for the pressure in the 
matching conditions results in 

A - B- e2(ai-iaT) c = F,, 
ez(i+iaT)B+ C-D = f; 27 

-B+,+i-iaT)C = -(ia/&)[B+(l -2;)e2(z--'"T)C I+HP 

(3.43) 

(3.44) 

(3.45) 

(3.46) e2(ifiaT)B-('+d = (ia/&)[(1 -2;)e2(i+f'"T)B+ C ] + H  2, 

where ' denotes the derivative with respect to T and 

On taking the derivative of (3.43) and (3.44) with respect to T, substituting the results 
into (3.45) and (3.46), a 2 x 2 coupled system results, namely 

x = Rx+f (3.47) 

where 

and (3.48) 

This system of ordinary differential equations provides a unique solution for the two 
coefficients B and C for the general solution (3.38). The other two coefficients A and 
D are solved using (3.43) and (3.44). Therefore, the problem of finding a unique 
solution to the initial-value problem rests on finding the solution for the system of 
equations (3.47). 

For the corresponding homogeneous equations (3.47), the first equation is 
differentiated and, eliminating C and C, the result is 

1 
4a2 

B + i 2 ~ ~ 8 + ~ ( 1 - 4 & - e - ' ~ ) B  = 0. 

Since the coefficients of the equation for B are constants, solutions of the form B = eiwT 
follow. After substituting and solving for the eigenfrequencies wl, 2, 

a 
wl, = -a: f rl/', r = (1  - 2~)2 -  e-48. (3.49) 2a 
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Without the Doppler shift term, -a, the resultant eigenfrequencies are the same as 
those for the normal mode solutions given in (2.4). 

A compact form of solution for the system (3.47) can be constructed in terms of a 
fundamental matrix as follows : 

The matrix, QI( T), satisfies 

where R is given by (3.47). The first column of the equations is 

6 = RQ, 4(0) = 1, 

(3.50) 

(3.51) 

(3.52) 

The solution of Gll is 

where wl, w2 are given by (3.49) and 

@ 11 - - (;)]eiwlT+(l -G1)eiwzT, 

-, 1 - 2di + r1l2 
2r1/2 * 

a 

After substituting this solution in the first equation of the system (3.52), which is 

the solution for @21 is found. The solutions for Q12 and @22 are found in a similar way. 
In matrix form, 

(3.53) 

Its inverse is 
3, e-iwl T - 2, e-iwz T (;)g(eiw, T - 

e-iwl T) G~ eiwl T - (3.54) 

with 

The eigenfrequencies (3.49) depend on both a and di. Consequently, as di --f 6, x 0.64, 
the two eigenfrequencies coalesce. At this limiting value of di = di,, the matrix solution 
of system (3.51) is 

(1 iqTe-iaT + iqT) eiaT 1 ' 
(1 - iqT) e-iaT 1 ' 

~ = ['l- iq T) e-iaT 
- iqTeiaT 

1 +iqT)eiaT -iqTe-iaT 
and its inverse is 

*-I = [' iqTeiaT 

The solution (3.55) denotes algebraically growing behaviour 
multiple eigenvalues when di,  = di,. 

(3.55) 

(3.56) 

and it is due to the 



44 Y .  Bun and W. 0. Criminale 

The inhomogeneous termf(3.48) may be rewritten in terms of @) as 

On evaluating (3.57) with 6;) given by (3.37), 

(3.58) 

= (a/4Z2)(2di- l){&[(l -yo)-ll -y,,l]- l)e-Ell-yol. 

The solution matrix, (3.50), is used where CP and are the matrix and its inverse 
given by (3.53) and (3.54) respectively. Once (3.50) is integrated, the internal-layer 
solution G2 is completed. The solution (3.50) is the core component of the specific 
solution in the internal layer since 

Gy2(7; = B(T)~-(E+~~T)(T-u  + ~ ( ~ ) e ( ~ - - i a ~ ) ( 7 + 1 ) + 6 ~ ) .  (3.59) 

From the matching conditions that require 6 to be continuous at the two interfaces, 
the expressions for the two coefficients of the Green's function in the external layers are 

A = (e2-Gf))17-l and D = (G2-Gg))17=-l. 
I "  

Thus, the Green's function for all layers is 

G1 = (Gy2 - Gyy))lVFl e-Eo(V-1) + Gyy), 7 > 1  

171 < 1 (3.60) 

7 < - 1. 6, = (Gy2 - Gyp))l,=-, eao(a+l) + G:), 

4. Specific disturbance velocities 
4.1. Implicit form of u for  the initial delta function 

The transverse structure is taken as one initial condition to be the same as the Green's 
function and satisfies 

(4.1) 

where a&, yo  are the initial wavenumber in the x- and z-directions, SZ, is a constant, and 
6 is the Dirac delta function centred at y = yo. In addition, the implicit form of u 
corresponding to the initial condition (4.1) with the delta function replaced by a top- 
hat function is evaluated. Although in this work all expressions involve complex 
numbers, it is their real parts that are taken to represent the corresponding physical 
quantities. 

For each layer corresponding to the piecewise linear basic flow, the governing 
equation for 6 in the Fourier space ( a ; y ; y ;  T )  with the initial condition (4.1) is 

(4.2) 

V2u(x, y ,  z ,  0) = SZ, e-'("o"+YoZ)8 (Y -Yo)? 

026(a; 7; y ;  T) = Sr, 8($, 
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where do = (27c)2B06(a-a0)f3(y-y0), 7 = q-yo. 

The solution for 6 in terms of the Green's function is 

m 

V' (a ; r ;y ;  T )  = S _ ~ ~ 0 S ~ ~ 0 - - Y u ~ ~ ~ 7 l ~ 7 l 0 ~ d 7 l 0 .  

Upon integration, 
u'(a;q;y; T )  = d 0 & J ; y o ) .  

45 

Since do = ( 2 7 ~ ) ~ B ~  6(a - ao) 6(y -yo), the full Fourier inversion to obtain the solution 
in the moving coordinate space (& q , [ ;  T )  can be obtained. In terms of the Eulerian 
coordinates the implicit form for the solution of v in the internal layer will be 

v,(x, y ,  z ; t )  = Do e"i(B(T) e-20 y+% T + c( T )  e&o y-iao '1 + u y ) ,  (4.3) 

U(r)  2 = - (Q0/2Q e-4Ul+iaoYo T 7 (4.4) 

where Do = Q, e-i(aoz+y& , 

[ = ~p [ * - ' ( T ) ~ ( T )  d7; (4.5) 

Cp and are given by (3.53) and (3.54) respectively with a,y changed to ao,yo and 

4.2. Implicit form of v for the initial top-hat function 
The problem (4.2) with the delta function replaced by a top-hat function is now 
considered. The solution is important because the top-hat function can be used to 
represent any general initial condition at finite discrete points, i.e. finite differencing of 
the initial condition. Then, the sum of a finite number of these solutions forms an 
approximate solution to a more general problem. Moreover, unlike the delta function, 
the top-hat function is non-singular. 

The governing equation for fi becomes 

with -1 < y o - c  and yo+€ < 1. 
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The solution for v' in terms of the Green's function is 

m 

u'(a;v;y;  T )  = /-~d,,n(~,-y,; .)6(y;yo)dy0. 

Since n ( y 0  - yo ;  e) vanishes for all Iyo -yol > e, the limits of the integral reduce to 
yo - e, yo + e, and the integral becomes 

Upon substitution for G2, 

{~(q e-(d+iaT) (7-1) + c( T) e(d-iaT) ( ~ + 1 )  ( r )  d (4.10) 
" d  +G 1 7 0 ,  
= 2e p"" go-t 

where x = (B, C) is given by (3.50) and 

gf) = - ( 1 / 2 ~ )  e-dIv-vnt+iaovoT. 

After integration, the full Fourier inversion can be made to obtain the solution in the 
moving coordinates and then, in terms of the Eulerian coordinates, 

v2(x, y ,  z ; t )  =: Do e"{B(t) e-20 y+ian T + c ( t )  e"n g-ian '> + v(r) 2 ,  (4.11) 

where Do = Q, e-i(anz+Ynz) 

PI, = a, Tf iZo, and 

(4.13) 

Q, and 9-' are given by (3.53) and (3.54) with (ol,y) changed to (ao,yo) and 

= ao7+iZo. The solution for all three layers takes the same form as (4.7). 
As e --f 0, the expression for dr)  (4.12) approaches (4.4), andyapproaches (4.6) or the 

top-hat function approaches the delta function. 

4.3. Detailed explicit form of v for the initial delta function 
With the initial condition for v satisfying 

V2v,(x, y ,  z ;  0 )  = 52, e-i(a~z+~ozf& (Y -Yo>, 
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the explicit form of the solution u in the physical coordinates is 

ugl = (ug2 - uL))ly=, e-zo(Y-l) + u@) 81 7 

uS3 = (On - u(r))I 63 g=-1 e4(g+l) + y(r) 63 , 

Y > l  

Y < - - l ,  

u 8 ( x , y , z ; t ; y o )  = uS2 = (~0 /2d0) (C1e i”~T+Cze~ i”~T+C3e ia~g~*) ,  IyI < 1 (4.15) 

where 

C = - e-&M - C - C 
3 1 2, 

- 1 -2d0&ri/2 - eVzE , w 3 = -  
2rA’2 ’ w1.2 = 

j.l = {dO[l 1 + yol - ( 1  +yo) ]  + 11 e-oio~l+y~l, 
h = {d0[(1 - yo )  - 11 - y , ~ ]  - 1 1  e-Eoll-~ol, 
7 y - yo,  d: a: + yt,  fi0 Q, e-i(aos+yoz) 

and OK), = - (Q0/2d0) e-&dgI+iao U(Y) T 

C,, C, and C, are bounded for all do, y and yo  except for the following values of d o :  

do = 0, do = d, x 0.64 with wo = 0 or wo = aoyo. 

In summary, the solution (4 .19 ,  depending on the parameter do, is 
(i) 0 < do < d ,  x 0.64; wo purely imaginary: The solution has an exponentially 

growing, an exponentially decaying and an oscillating term in T. 
(ii) do = d ,  M 0.64; wo = 0 and yo  #= 0: The solution grows algebraically in Tand the 

eigenvalues coalesce. 
(iii) do = d, z 0.64; wo = 0 and yo = 0: The solution grows algebraically in T. The 

two eigenvalues of (3.47) have the same value and the inhomogeneous term f is in 
resonance with the system. 

(iv) do > d ,  M 0.64; wo is real and aoyo = w o :  The solution grows algebraically in T. 
The forcing termfin the system (3.47) is in resonance. 

(v) do = 0: The solution is independent of T. 
Since the solution (4.15) depends on three parameters, yo, ao, yo, it is prudent to 

analyse the cases for different values of # = tanp1 (yo/ao) in addition to the above five 
cases. Different values of the parameter # corresponds to different angles of the initial 
obliquity for the initial three-dimensional disturbance. 

(i) 0 < do < d6 x 0.64; wo purely imaginary 

square root is taken to be positive so that 
Here, the value of do is in the interval 0 < do < d ,  x 0.64, and the branch of the 

wo = (ia0/2d0) [e-4io - ( 1  - 26i0)2]1/2. 

The solution (4.15) has one exponentially decaying term as shown with the coefficient 
C,, one exponentially growing term as shown with the coefficient C,, and one 
oscillating term as shown with the coefficient C,. 
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For large T, the exponentially growing term dominates the solution. Thus, the 

u(x,y, z ;  t )  - (fi0/201,) C2ePi"oT as T+ cc (4.16) 
solution tends to 

where 

The exponential growth rate -iw, is exactly the same as that corresponding to the 
normal mode. For a fixed value of di,, the maximum and minimum growth rates are 
$ = 0 and i7c respectively. This is the key argument that proves Squire's theorem for 
normal mode disturbances which states that for any unstable three-dimensional 
mode, there is a corresponding faster-growing two-dimensional mode. The two- 
dimensional mode is equivalent to the case $ = 0 and w = 0. 

Note that Squire's theorem does not cover the dynamical behaviour of the transverse 
vorticity 4, governed by (3.31) and the solution for Q,, together with u, directly 
influences the behaviour of the other two velocity components (3.27) and (3.28). 
However, the solution to the governing equation for Qy would be an integral with u as 
the major part of the integrand. So, at large time, the exponential growth rate of all 
velocity components is the same as that for 0. Thus, as long as T is large, Squire's 
theorem is applicable. 

For small time, all terms in the solution (4.15) are important to the growth rate of u.  
Also, during the transient time, the growth rate depends on the coefficients C,, C, and 
C,. Squire's theorem is not valid for the reasons cited and because the solutions are 
non-separable. The disturbance kinetic energies for this solution for different angles of 
obliquity grow at a comparable rate during the transient time, as will be shown in 96. 

Other aspects of the 4, equation have been exploited as well and presented most 
succinctly by Benney & Gustavsson (1981). In this work, it was shown that there could 
be resonant solutions for 52, with Y. Interestingly, resonance occurs for damped 
exponential solutions and the algebraic dependence allows possible transient growth 
but it is not due to the continuous spectrum. 

(ii) 01, = 01, z 0.64; wo = 0 and yo $: 0 
When w, = 0, the solution (4.15) has no exponentially growing behaviour. However, 

by taking the limit of the solution (4.15) as di, + E, (w, + 0), a solution linear in T results 
where 

u2(x,y ,z;  t) = (~0/201s)(P0+iP,ol, T+ P2ei"sYoT), (4.17) 
with 

- io, = kcos (p [e-480 - (1 - 2010)2]1/2, $ = tan-' (yo/ao). 

P, = (e-38s/2E,"yO)~~~h (E,y)(L-J), 

P, = ( I /yo) [P, + (e-"s/2di,) (e-"sgA + eas~fl,>l, 
p = - p - e-GlY-Yol, 

0 

= {iis[ll +yol - (1 +yo)] + I >  e-OiSl1+~ol, 
j.2 = {EJ(I -yo) - 1 1  -yol] - I >  e-Esll-yol, 
c;,Z a," +.y,", fi, 4, e-i(a.3 s + ~ s z ) ~  

Note that here dis implies ec2'S = 2&,- 1. Another way of getting the solution (4.17) is 
by reconsidering (3.47), which governs the two coefficients of 6,. The corresponding 
homogeneous equation of (3.47) has solutions in the form of exp (io,, T), where w,, 
are the two eigenvalues of the system. When 01, = dis z 0.64 such that wo(di,) = 0, 
iwl, , T = - iolT, which gives only one exponential solution for the homogeneous 
equation. Therefore, the two independent solutions must be in the following form : 

( e - iaT,  Te-iaT 1. (4.18) 
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On re-evaluating (B, C) based on the two linear independent solutions (4.18), (4.3) is 
obtained. 

By analysing the growing term of the solution (4.17), u is found to grow linearly in 
T with the coefficient i& a, = PI di, cos #. Since PI depends only on di,, y and yo, this 
solution is also in agreement with Squire's theorem: $ = 0 and fx give the maximum 
and minimum growth rates respectively. However, Squire's theorem does not cover the 
dynamical behaviour of the transverse vorticity R, governed by (3.3 1) and the solution 
for nu, together with u, directly influences the behaviour of the other two velocity 
components (3.27) and (3.28). In fact, the growth rates for the other velocity 
components do not depend on $ as the simple cos$ in the solution for u. 

(iii) diO = di ,  z 0.64; w0 = 0 and yo  = 0 
As mentioned in the previous case, when do = di,, there is only one eigenfrequency 

for the solution of the corresponding homogeneous equation of (3.47). Since the 
exponential term of the homogeneous solution is the same as one component of the 
forcing functionfwhen yo  = 0, a resonant solution is generated. 

Either way, reconstructing the solution from the solution of the system (3.47), or 
taking the limit of the solution (4.3) as yo+O, gives 

(4.19) 

(iv) di ,  > 2, z 0.64; w, real and a,y, = w, ;  lyol < 1 
When the initial wavenumber magnitude is greater than the neutral value (a, > dis),  

the solution (4.15) has no exponentially growing behaviour. For a, yo =l= w,, it is purely 
oscillatory. However, when a, yo = w,, the limit of (4.15), as a, yo  -+ w,, is required and 

u2(x,y,z; t )  = (~,/2d,)(S0+iS101, T-e-soiQl+iaoyoT 1, (4.20) 
where 

e-2'o 

8%Y, 
So = 7 {( 1 - 2&,) cosh (Coy") + 2d, yo  sinh (di,j) -ee-2'ocosh ( d i , ~ ) } ,  (4.21) 

e-2E* 

4 % ~ ~  
s =-- ((1 -2di0)cosh(dioy")-2di,y,sinh(dioy")-e-2E~cosh(di,~)}. (4.22) 1 

For large values of do, w, is real, and w, + 1 as di ,  + GO. These real eigenfrequencies are 
encountered in many other applications of the normal mode analysis for piecewise 
linear basic flows, when the curvature of the basic profile is concentrated at a discrete 
set of points (cf. Betchov & Criminale 1967). 

(v) di,  = 0 
Here the specific solution for the transverse velocity component is independent of 

time and equals the initial value. This can be shown by starting from the continuity 
equation where 

- ia, u - iy, w + du/dy = 0, 

for which a, = di, = cos$ = 0, yo = &,sin$ = 0 when di, = 0. Thus, u = u($, T) and 
independent of y .  Since u must be continuous at the two interfaces y = & 1, 

N$, T )  = q($, T) = uz(#, T )  = T) 
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also follows. The momentum equation in the y-direction for this case reduces to 
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aqaT = - apj/ayV, 

where j = 1, 2 or 3 denotes the corresponding layer. Integrating with respect to y ,  

p .  = -___ T,  y +p0,&, T) .  
3 aT 

Since the disturbed pressure must be bounded as y + k co, for the external layers, 

This gives 

only. Thus, when do = 0, the specific solution for the transverse velocity component is 
a steady-state solution. However, this does not mean that the other two components 
of the disturbance velocity are also constant. In fact, from the momentum equation in 
the x-direction this case simplifies to 

&/aT = - U’V 

which can immediately be integrated to give 

u = -U‘VT+U,(X,~ ,Z) .  

So, in the internal layer where U’ = 1, u can increase linearly in Tif v is not identically 
zero. This suggests that any analysis of the disturbance must include all three 
components of the velocity field. 

4.4. Other velocity components and pressure 
For convenience, three-dimensional solutions are analysed using various values of the 
initial polar variables do = (at +y;)”’ =i= 0 and the angle 4 E tan-’ (yo/ao) instead of 
(ao,yo). The expressions for the other velocity components and pressure in the two- 
dimensional Fourier space are given by (3.27), (3.28) and (3.29). In the physical 
coordinates, 

p = 

(4.23) 

(4.24) 

(4.25) 

where 

Q,(x, y, z, t )  = i u‘( y) di, sin 4 eiaoyT v(x, y, z,  7) e-iaoy7 d7 + QJx- Ut, y, z),  

(4.26) 
JOT 

and has the simpler form in the moving coordinates, 

Since U’(y) = 0 in the external layers, Qg is conserved for all values of &, and 4. 
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In the internal layer, q5 = 0 and in are the two extreme cases for which the solution 
depends only on two spatial variables x,  y and y ,  z respectively. Q, for the two extreme 
cases is 

where q5 = 0 and w = 0, the usual consideration of a two-dimensional initial 
disturbance that is independent of the spanwise z-direction. Since w = 0 gives SLY = 0, 
the expression for the streamwise velocity simplifies to 

u = - (i/a0) au/ay. (4.28) 

This is two-dimensional planar motion with only one non-zero component of vorticity, 

When q5 = 0 but w(x, y ,  z ,  0) =l= 0, the expression for u in terms of ZI is the same as 

4 x 9  Y ,  z ,  0 = w,(x - Ut, y ,  2) .  (4.29) 

This unsteady solution for w can lead to a growing streamwise vorticity component, 

The other extreme is q5 = fn. The resultant transverse and spanwise velocity 
disturbances u, w and pressure are independent oft, but u increases linearly in t. In fact, 

52,. 

(4.28). With w(x, y ,  z ,  0 )  = wo(x,y ,  z )  + 0, the solution for w is 

Qz- 

[i] = -  
3 (4.30) 

where uo(y,z;  yo) = fioIl,(y,yo), a, = 120e-i~oz and iiO(y, yo) represents an arbitrary 
vertical structure of the initial velocity disturbance u,. 

The above result is similar to the solution found earlier by Ellingsen & Palm (1975) 
and is a very simple expression that may explain a physical process regarding the origin 
of the three-dimensional instability in the mixing layer. The initial disturbance for this 
case is independent of x but periodic in z with initial wavenumber yo = die. 

The streamwise velocity u grows linearly in time while the transverse and spanwise 
velocities, u, w remain constant. Since u is independent of x,  the growth of u has a 
distortion effect on the mean flow and such an effect could lead to local breakdown of 
the laminar flow regime and is a typical of so-called fast transition. 

4.5. Three-dimensional initial disturbance as a single oblique mode 
The streamwise-independent initial disturbance (4 = fn) is a special infinite-wave-train 
initial disturbance that has a simple structure. However, this structure does nQt model 
the initial disturbance that leads to nonlinear roll-up of the spanwise vortices because 
of the streamwise independence. An infinite-wave-train initial disturbance that could 
lead to nonlinear roll-up would have to be for 4 = 0. This solution has been discussed 
in the previous section. Here, the solution Q, corresponding to the three-dimensional 
initial disturbance with an oblique wave 0 < q5 < $E is considered. 

(i) 0 < do < di, z 0.64; exponential growth and decay 

} Q, = -fi, tan ${el eiwo T + e, e-iwo Tc, eiZ,Yo T c o s 4  + c ei4,vTcos4 

+ Qv0(x - Ut, y ,  z). (4.3 1) 
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(ii) do M 0.64 and yo =!= 0 ;  algebraic growth and resonance 

SZy = -(Go/2di,)tan${~+ifi T C O S # + E ~ ~ Q ~ T ~ ~ ~ $ + P "  3 eiEsUTcos$ 1 
+Q,,(x- Ut,y,z). (4.32) 

(iii) d o  = ds z 0.64 and yo = 0 ;  algebraic growth 
0, = - (Cj0/2ds) tan $@,(I -eiEsyTcos$) + iQ, ~ c o s  4 + Q, T~ cos2 $1 

+ Q,,(X- ut, y, z) .  (4.33) 

(iv) do > ds M 0.64, lyol < 1 and wo = yodocos$; algebraic growth 

SZ, = - (G0/2d0) tan ${go + is, ~ c o s  qi + g2 eiEoyoTcoS$ + g3 eiEoyTCoS$) 

+ Q,,(X- Ut, y, z). (4.34) 

Except for o,,, all coefficients in (4.31)-(4.34) listed below depend only on y,yo,do: 

wo = fr;/2 cos 4, 
C, = (2d0 y - rA/2)-1~,,  

ro = (1 - 2d0)2 - e-,"~, - 
E2 = (2d0 y + rA/2)-1~2, 

E3 = C3/(2dOP)' c, = - ( E 1 + E 2 + E 3 ) ,  
- P , - p z -  - -  
P --, P --, P3=-P-P 0 2' 

Y 
2 -  

Po=-+ - Po p 2  

y docosq5y2' Y 
- 

I e-2Es e-4E, - e-4ao 

Q ,  = - s inh(d . ,y )+~cosh(d ,y) ,  
Y as Y 2Y 

Q, = --cosh(dsy), 

- so s, - s, - s2 - - -  so=-+- sl=-, s =-  s = - ( S + S )  0 2 '  P '  Y y2 '  Y 

These expressions for S Z ,  together with v given previously represent a complete 
description for all three components of the disturbance velocity field; the velocities u 
and w are expressed in terms of v and 0, as shown in (4.23) and (4.24). The spatial 
structure of all velocity components are periodic in the (x,z)-plane with the wave 
vector (cos 4, sin 4). Detailed structure in y also depends on the initial value of the 
transverse vorticity 0,(x, y, z, 0) = Qy0(x,y, z) which can be arbitrarily specified. 

The single oblique wave disturbance with 0 < 4 < an grows exponentially or 
algebraically in time depending on the scalar wavenumber Go. When do < ds z 0.64, all 
components of the disturbance velocity grow exponentially in T; when do = ds, growth 
is algebraic in T. For do < d8 M 0.64 and for large T, the exponentially growing term 
dominates the solution and (4.15) may be rewritten as 

where 
v ( x , y , z ; t )  - (~0/2d0)C2e-i"oT as T-t 00, (4.35) 

The exponential growth rate, -iwo, is exactly the same as that corresponding to the 
normal mode. For a fixed value of do, the maximum and minimum growth rates are 
at q5 = 0 and $ = in respectively. This is the key argument that proves Squire's theorem 
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for separable normal mode disturbances in inviscid flow where the two-dimensional 
mode is equivalent to the case $ = 0 and w = 0. 

During the transient time of the evolution the growth of the disturbance is 
dominated by the algebraic behaviour. The factor tan$ appearing in the expressions 
for 52, is important for the oblique wave solution. When $ is near zero, the growth rate 
of 52, is small compared to u. The reverse occurs when $ is near in. When 
do = d, z 0.64 and y =I= 0, the growth rate of v has a factor cos$ but the growth rate 
of SZ, has a factor sin$. 

For the case do < ds, the exponential may be expanded in a power series in T and, 
for small T, the growth rate of u has a factor cos$ and the growth rate of 52, has a 
factor sin$. These results together with (4.23) and (4.24) reveal that the growth 
behaviours of u and w do not agree with Squire’s theorem. This observation is not a 
conflict since it should be noted that these solutions are, unlike normal modes, non- 
separable. Thus, the theorem could not be applicable. However, it is not clear from the 
expressions for u, 52, and u, w what value of $ corresponds to the fastest growth rate 
during the transient time. 

5. Vorticity 
5.1. Streamwise-spanwise periodic disturbance 

Mathematically, the velocity field and pressure are the primitive variables representing 
the basic elements of a flow. However, in many instances, it is advantageous to 
interpret the events in a flow in terms of the vorticity dynamics. For example, the 
physical mechanism of Kelvin-Helmholtz instability has been conveniently described 
in terms of the vorticity dynamics (Batchelor 1967). 

With vanishing second derivative of the basic velocity U”(y) = 0, the linearized 
equations that govern the vorticity disturbance may be written as 

-+U-+U‘ --QYe, = 0, (: ) aa aa 
at ax 

where e,  = (1, 0,O) and 52 is the perturbation vorticity. 
For the x-z periodic disturbance, (5.1) simplifies to 

where 

ia, Ua- U‘(iyo u + 52, el) = 0, 
aa 
at 
_- 

On changing to the moving coordinates, the linear equations governing the disturbance 
vorticit y (5.2) become 

U’(iyo u + 52, el) = 0. 
aa __- 
aT (5.3) 

For the method of solution ($3), a systematic procedure to solve for the transverse 
velocity component u was provided. Thus, when u is found, the 7-component of (5.3) 
can be immediately integrated to give 
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The kinematic relations for the other two vorticity components in terms of the velocity 
field are 

52, = (a/aq + ia, U’T) w + iyo v, 

52, = -(a/ar+ia, U’T)u-ia,v. 

By defining the polar variables such that 

QE0 = cos $52, + sin $a,, 
52, = - sin $52, + cos $Q,, 

then Q&-, 735, T )  = + id, cos $U’T) @(E, 7, c, TI, 

Q,(& q,c, T )  = - @/a7 + id, cos $U’T) ii - id, u. 

From the continuity equation and the relation of G in terms of SZ,, 

;(a;?;?; T )  = -(i/d)(a/ar+idcos$U’T)u’, 

@(a; 7; y ;  T )  = (i/di) d,. 
Upon substitution for ii, fi into (5 .5)  and (5.6), 

Q&, 7,5, T )  = (- i/dJ (a/% + id, cos W ‘ T )  Q,(& 775, TI, 

a&, 7, c, T )  = (i/d,) (@/a7 + id, cos $U‘T)z - di;} u. 

Q,(& 7, c, T )  = (i/do)ca2/a72 - d 3  u, (L  795) = Q $ O ( t ?  r ,6),  

(5.7) 

(5.8) 

(5.9) 

where 52,, is the initial condition that is proportional to the Laplacian of u, in the 
Eulerian coordinates, i.e. 

V2u,(x, y ,  z) = -id, Q,,(x, y ,  z), 

All components of the vorticity field are obtained by simple substitution and, in the 

From the governing equation (3.32) for u, the expression for 52, reduces to 

moving coordinates, 

1 1- i ($ + id, cos 

Then, transforming (5.10) to Eulerian coordinates, 

where 

Q,(x, y ,  z ,  t )  = iU’( y )  do sin $ eiiOcoS~YT 1; u(x, y ,  z ,  7)e-iEocos~yTd 7 + Q,,(x - Ut, y ,  4, 

(5.12) 
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Q,(x, Y, z ,  4 = Q& - Ut, Y ,  z).  (5.13) 

From the solution (5.1 I), (5.12) and (5.13), it can be concluded that a unique vorticity 
field solution is determined once the initial conditions 52,, and Qy0 are known. 

5.2. Spanwise-independent disturbance 
In the special case for which the solution is assumed to be independent of the spanwise 
variable z ,  the vorticity equations (5.2) reduce to 

an an 
at ax -+ U - -  U’QYe, = 0 

subject to the initial conditions 

(5.14) 

(5.15) 

where wo and Q,, are the initial velocity and vorticity components in the spanwise 
direction and are arbitrary functions of x, y .  Streamwise-periodic functions for w, and 
a,, will be considered below. Note that it is not assumed that w, = 0 which 
oversimplifies the problem to planar motion. Non-zero w, and no z-dependence is 
three-dimensional. 

On transforming to the moving coordinates, the problem (5.14) and the initial 
condition (5.15) become 

U‘R,e, = 0, 
an _- 
i3T 

(5.16) 

(5.17) 

The 7- and <-components of (5.16) implies that Q, and 52, are constant in time. 52, 
being constant allows an integration of the [-component (5.16) and the result is 

As an illustration, if the initial disturbance is periodic in the x-direction with 
wavenumber a, such as 

(5.21) 
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then, by substituting (5.21) into (5.19), the vorticity solution is 
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(5.22) 
(spy + icr, U’t) w,(y) 

iao WO(Y> [ fi*,(Y) 

Q(x, y ,  t )  = e-’ao(,-Ut) 

The case for which the disturbance is assumed to be independent of z with the initial 
condition (5.21) has the general solution (5.19). If wo vanishes, planar motion for which 
the vorticity in all directions is conserved, results. However, when w,, is not zero, the 
vorticity in the streamwise x direction, Q,, is not conserved, as for an example, the 
streamwise-periodic initial disturbance (5.2 1) leads to the solution (5.22) for which 52, 
grows linearly in time. 

5.3. Streamwise-independent disturbance 
For the special case for which the solution is independent of the streamwise variable 
x, the vorticity equations (5.1) in the fixed coordinates reduce to 

(5.23) 

From the governing equation for v and the continuity equation, the solutions for v and 
w are independent of time. All component equations of (5.23) can be immediately 
integrated to give 

(5.24) 

The solution (5.24) with non-zero initial velocity v and w has vorticity in the transverse 
and spanwise directions that increases linearly in time. 

5.4. Vorticity field corresponding to the initial delta function 
In all previous sections, an x-z periodic disturbance vorticity field with arbitrary y 
dependence was discussed. The vorticity field corresponding to the initial delta 
function solution is found by taking the curl of the velocity field. The result, in the same 
form as (5.11) with v being the solution corresponding to the initial delta function given 
in $4, is 

(5.25) 

where 
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All three components of the vorticity field are expressed in terms of only two quantities, 
52, and a,, where L2+ is a conserved quantity in all layers. Thus, a unique vorticity-field 
solution corresponding to the initial delta function is determined once the initial value 
of the transverse vorticity 52,(x, y ,  z ,  0)  = Q,, is specified. 

In the external layers IyI > 1, the basic velocity U is constant, and its derivative 
vanishes. Thus, 52,(x, y ,  z ,  t )  = Q,,(x- Ut,y ,  z )  and, from (5.1 l), all components of the 
vorticity field are conserved. 

In the internal layer lyl < 1, the basic velocity U = y ,  and its derivative is constant. 
The growth of the disturbance vorticity in time depends on both do and q5. For the cases 
q5 = 0 and in, 

When C$ = 0 and w = 0, all components of the disturbance vorticity are conserved. 
When C$ = 0 but w =!= 0, 52, grows linearly in T and the other two components are 
conserved as given by (5.22). 

When q5 = f. with arbitrary u,, 52, is conserved but the other two components grow 
linearly in T or 

where 

9 (5.29) 

and Go( y ,  yo)  represents an arbitrary vertical structure of the initial velocity disturbance 
uo. Although the streamwise disturbance vorticity stays constant for all time, the 
transverse and spanwise vorticity disturbances grow linearly. Thus, when nonlinearity 
becomes significant, the transverse vorticity disturbance may have tilted into the 
streamwise direction because of shearing in the basic flow. This is a possible origin of 
the existent streamwise vorticity disturbance suggested by the experimental study of 
Lasheras & Choi (1988) and the numerical study of Ashurst & Meiburg (1988). The 
stretching effect due to the basic shear velocity will intensify any non-zero streamwise 
vorticity when viscous effects are small. 'Vortex stretching is a physical mechanism for 
entrainment and production in all turbulent flow' (Hussain 1986). 

When 0 < C$ <$, all three components of SL grow exponentially and/or 
algebraically in time depending on the value of do because 52, is the integral with as 
part of its integrand (5.26). The explicit expressions for Q, for various do are given by 
(4.31)-(4.34). For do < cZS % 0.64 and Q,(x, y,z,O) = 0, all components of S2 grow 
exponentially; for ii0 = d, ,  a11 components of S2 grow algebraically. When do < d,, 
O,(x, y ,  z, 0)  =k 0 and is periodic in the (x ,  z)-plane, the expressions for 52, and 0, have 
terms that are linear and exponential in T. 

The growing behaviour of the disturbance vorticity field depends on the wavenumber 
as well as the initial transverse vorticity component Q,,. For the case of spanwise 
independence, all components are conserved when 52,, = wo = 0 but the streamwise 
vorticity component grows algebraically in time when a,, =l= 0. This is different from 
the growth behaviour of the transverse velocity component, which is not affected by 
52,, but grows either exponentially or algebraically in time depending on the 
streamwise wavenumber. 

Figures 2 4  show comparison plots of the vorticity magnitudes as a function of time 
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FIGURE 2.  (a) 152,1 with do = 0.4 and yo = 0.8; (b) ISZJ with tio = 01, and yo  = 0.8. -, $ = in. 8 ,  

, 9 =in. -.-.-.-._ , 9 = 2n. * ,.......... , $ = i n .  
4 1  

______ 

in semi-log graphs with growth rates defined as d In (lSZl)/dT, where SZ = Q,, 52, or 0,. 
The vorticity field is calculated from (5.25),  and in all cases O,, = 0 is fixed and y = 1. 
For a small value of the oblique angle with wavenumber magnitude less than the cut- 
off value and SZ,, = 0, all components of the vorticity field grow exponentially in time 
with the same exponential growth rate as the transverse velocity component but 
multiplied by small constants. As the oblique angle increases from zero, the transverse 
vorticity component also grows exponentially in time with the same exponential 
growth rate as the transverse velocity component but with increasing multiplicative 
constants; the other two vorticity components have the same exponential growth rate 
but with different multiplicative constants. As the oblique angle increases to +IT, the 
exponential growth rate of the transverse velocity component and all components of 
the vorticity field tend to zero. 

When the oblique angle equals ~ T C ,  the transverse and spanwise vorticity components 
grow algebraically in time and the streamwise velocity component is conserved. 
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9 8 7  

6. Evolution of disturbance energy 
6.1. Dejinition 

The kinetic energy for the disturbances as a volume integral over a finite domain in the 
(x, z)-plane and the infinite interval in the y-direction is defined as 

where a, and yo are the wavenumbers of the periodic initial disturbance in the x- and 
z-directions respectively. Note that, when v is periodic in the (x,z)-plane, it can be 
written as 

Since the velocity field must satisfy the continuity equation, u and w must also be 
periodic in x and z .  The energy integral (6.1) can then be integrated with respect to the 
x and z variables leaving 

Solutions for the other two velocity components, u and w, together with the initial 
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conditions must be specified in addition to v. However, it is more convenient 
mathematically to consider the initial specification of the transverse vorticity 
component SZ, which is a combination of u and w. 

Since the velocity components u and w are expressed in terms of v and Q,, a unique 
velocity field solution is found by specifying Q,,(x, y ,  z )  in addition to v. On using the 
expressions for u and w shown in (4.23) and (4.24), 

where the overbar has been dropped from all dependent variables. After integrating the 
second term of the integrand by parts in the external layers, 

The solutions for ZI in the external layers, v1 and v,, are expressed in terms of the 
solutions for v in the internal layer, u2, or 

vl(x, y ,  z,  t )  = vz(x,  y ,  z ,  t)l,=, e-"( ,-l), 

u,(x, y ,  z,  t )  = v,(x, y ,  z ,  t),=-, eao(y+l), 
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and, since u --f 0 as y + f 00, the expression simplifies to 

Recall from (4.26) that 

QY(x, y, z ,  t )  = i U'( y) ii0 sin 9 eiGyT u(x, y, z ,  7) e-iunY' d7 + sZYO(x - Ut, y, 2). (6.5) 

Thus, with the x-z periodic solution, the kinetic energy can be expressed in terms of 
u, and Q,, as shown in (6.4) and (6.5). This implies that the asymptotic behaviour of 
the kinetic energy is dominated by the asymptotic behaviour of u,. However, the 
transient behaviour depends on both u2 and QYP as well as the initial wavenumber and 
angle of obliquity and the structure of the initial values in the y-direction. 

6.2. Two-dimensional planar motion 
In the special case for which the oblique angle of the initial wavenumber and the 
spanwise velocity component are zero, two-dimensional planar motion results. Since 
q5 = 0, Qy = ia, w, and so 51, = 0. From the initial delta-function solution (4.7) for u, 
the integrand (6.4) of the kinetic energy integral has only one finite discontinuity at 
y = yo. On integrating by parts, 

JOT 

From the initial delta-function solution for u, 

a; u - a2u/a2y = 201, S( 7) d7) 

After employing this expression and integrating, 

With the implicit expression for the Green's function, solution (4.3) for u,, 

Ex( T )  = (51344) + a. e4ao((B(2 + lC12) 

11. (6.8) + 201, Re [Ec * e2an + rt ean-% Yo t ( B  - e-"o Yo + eao Yo 

The kinetic energy expression for the solution corresponding to the initial top-hat 
function is 

E,(T) = aoe4a~(IB12+IC12) 

where B, c for the delta-function solution and the top-hat function solution are given 
by (4.5) and (4.13) respectively; B" = BeiaOt, = Ce-iaot, V t  = (510/2a0)ei(a~z+~~2) and 

By taking the limit of (6.9) as €-to, the same expression for E,(T) as (6.8) results. 
Closed-form expressions for B and C for the solution corresponding to the initial delta 

PI, , = ao(Tf i). 

3 FLM 273 
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function are available. However, numerical integration techniques have been used to 
compute the solution corresponding to the initial top-hat function. 

The kinetic energy for both the initial delta function and the top-hat function 
solutions depends on T and the two parameters yo and a,. The energy for the top-hat 
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FIGURE 7. E, for the initial delta and top-hat functions at yo = 0: (a) a. = a,; (b)  a,, = 0.4. -, initial 
delta function; ------, initial top-hat function with E = 0.2; -.-.-.-.- , initial top-hat function with 
E = 0.3; .........., initial top-hat function with E = 0.4. 

function contains the additional parameter E .  The following discussion is based on 
plots of E,(T) normalized by E,(O) versus T in the semi-log graph and their growth 
rates as defined by $(d/dT)log{E,(T)}; the kinetic energies are calculated from the 
analytical expressions (6.8) and (6.9). 

Comparison plots of EK corresponding to the initial delta function for various a. 
and yo = 0 are shown in figure 5. As can be seen, the growth rates of these disturbances 
approach the asymptotic behaviour that is the normal mode at large T except when 
a. = a,, where the energy increases algebraically. 

Comparison plots of E,  corresponding to the initial delta function for various yo are 
shown in figure 6 for two fixed initial wavenumbers: a. = a, x 0.64 and a. = 0.4. The 
largest magnitude of the energy occurs when yo  = 0. 

Comparison plots of E,  for the initial delta function and the initial top-hat function 
solutions that grow algebraically (a, = a, x 0.64) are shown in figure 7(a).  This figure 
illustrates that, as 6 -+ 0, the energy for the top-hat function solution approaches that 
for the initial delta function. Also, as seen from the graphs, when yo  moves away from 
zero, the E, for the initial delta function grows at a slower rate than that for the top- 
hat function. Although yo = 0 is nothing special physically, it is special for the initial 
delta function because it is the location of the singularity. 

For a. = 0.4, the results are shown in figure 7(b).  The growth of the energy for the 
3-2 



64 Y. Bun and W. 0. Criminale 

solutions corresponding to the initial top-hat function are almost the same as that for 
the initial delta function, regardless of the value of E. 

The growth rates of the energy for all cases rapidly increase in the early period of its 
evolution. For the energy corresponding to the solution with purely exponentially 
growing behaviour, the growth rate rapidly rises above its asymptotic exponential 
growth rate, then rapidly decreases toward this asymptotic value. During this transient 
time, for which the growth rate is rapidly changed, its energy, as well as the energy for 
all other cases, reach a level approximately ten times their initial values. 

6.3, Three-dimensional disturbance as a single oblique mode 
From the initial delta-function solution (4.7), the expression for the kinetic energy 
corresponding to the full three-dimensional solution is 

(6.10) 
The initial value of the energy is 

(6.11) 

For large 7‘ and 02, < ES, the solution (4.15) for v is dominated by the exponential term, 

u(x,y ,z ,  t )  - ( f i 0 / 2 E 0 )  C2e-‘”oT as T+ 00, (6.12) 

where -iw, = ~cosq5[e-”~-(l -2&0)2]1’2. (6.13) 

By using the kinetic energy expression (6.10) together with the solution for SZ, that 
depends on ZI and (6.12), the asymptotic behaviour of the energy for the oblique wave 
solution approaches the exponentially growing behaviour predicted by the normal 
mode solution when 02, < ES. By examining the dependency of the solution in terms of 
the oblique angle 4, it is found that the growth rate (6.13) has a factor cos q5 and is 
maximum at 4 = 0. The factor cos 4 of the exponential growth rate is the key argument 
that proves the Squire’s theorem : q5 = 0 and in are the maximum and minimum growth 
rates respectively. 

For the case 4 = 0 and yo  = 0, SZ2,,(x,y) = Re{ia,w,(x,y)} = Re{ia,e-i”~5w,(y)} 
where w,, is an arbitrary function of y .  The kinetic energy for this case is 

EK( 7‘) = Q: { 1 + (e-4ao + eP3Or osinha,) 
4a0 

where w(x, y ,  t )  = w,(x- Ut,y). Since w, is periodic in the x-direction and of the form 
wo(x,y) = Re{e-’”o”w,(y)}, IwI2 = ~ w o ( y ) ~ 2 .  Therefore, the last term in (6.14) is constant 
in T and the growth of the kinetic energy is the same for any choice of the streamwise- 
periodic initial condition, O,,(x, y ) .  

For the case, 

4 = an,SZ,,(x,y) = Re{-iy,u,(y,z)} = Re{-iy,e-i~~ziio(y)}, 

where iio is an arbitrary function of y .  The kinetic energy for this case is 

E,(T) = *{1 SZ2 +~(1-ee-2~~cosh(2y,y,)) T2)+~1uov*Tdy+Z/ -m 1 IUoI2dy. 
47, -1 

(6.15) 
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From the first integral of (6.159, which is of order T, the structure of u, affects the 
transient behaviour of the disturbance kinetic energy but not the asymptotics. 

In the transient period, for the case of Q,, = 0, the growth rate of the energy 
corresponding to q5 = 0 is smaller than that corresponding to q5 = fn, as seen from the 
kinetic energy expressions (6.14) and (6.15) for the case di, = di, and yo  = 0. As 4 
increases from 0 to fn, the growth rate of the disturbance energy increases because the 
growth of Qu increases. This is in contrast to Squire's theorem. The same comparison 
results also hold for the case 0 < do < di,, as a power series expansion for small 
T reveals. 

The comparison plot of the kinetic energy for the initial delta function corresponding 
to the solution that grows algebraically in T is shown in figure 8(a). The initial 
wavenumber is a, = a,, Q,, = 0 and the initial pulse is placed at yo  = 0. Various values 
of the oblique angle illustrate that, in the transient period as 4 increases from 0 to in, 
the growth rate of the disturbance energy increases. Similar results are shown for the 
case where the solution grows exponentially in T (figure 8b);  the initial wavenumber 
is a, = 0.4, Quo = 0. Figure 8(b) also illustrates that the asymptotic behaviour of the 
energy approaches the purely exponentially growing behaviour predicted by the 
normal mode analysis and, as g5 decreases from in to 0, the growth rate increases. 

Three-dimensional plots of the energy versus wavenumber magnitude, ii,, and 
oblique angle, g5, at some fixed time, T, are shown in figure 9. In the early period of the 
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evolution, T = 1, as q5 increases, the energy also increases for all di, > 0. For later time, 
such as T = 5 ,  the energy level is approximately the same for all values of q5 and di, 
except for larger values of d,, when the energy still increases as 9 changes. When 
T = 10, the exponentially growing behaviour becomes strong, and the plot shows that 
the highest level of the energy occurs at di approximately equal to 0.4 and q5 = 0. 

In summary, the asymptotic behaviour of the streamwise-spanwise-periodic 
disturbance can be either exponential or algebraic in time, depending on the value of 
the wavenumber Go and the oblique angle 9. The exponentially growing asymptotic 
behaviour is dominated by the normal mode for which the Squire’s theorem is 
applicable where q5 = 0 and $IT give the maximum and minimum growth rates 
respectively. Contrary to Squire’s theorem, in the early period, the maximum and 
minimum growth rates are at q5 = in and q5 = 0 and the growth rate changes rapidly. 
For the disturbance energy corresponding to exponential behaviour, the growth rate 
rapidly increases and rises above, and then rapidly decreases to, the asymptotic value. 
During this transient time for which the growth rate is rapidly changing, its energy as 
well as the energy for all other cases reach the level of about ten times their initial 
values. Thus, during this transient time, the disturbances may grow to large enough 
amplitudes and nonlinearity can become significant and the normal modes become 
moot. 

7. Evolution of material particles 
7.1. Particle path formulation 

One of the natural extensions of particle mechanics is the Lagrangian viewpoint in fluid 
mechanics. Each particle, as it moves through the flow, is labelled by its original 
position xo and the particle path is governed by 

dx(t)/dt = U ( X ,  t),  (7.1) 
x(o) = (7.2) 

where x(t )  is the position of the particle; u(x, t )  is the velocity field that includes both 
the basic flow and the disturbance or 

In all cases, the initial disturbance that corresponds to the delta function with 
vanishing initial transverse vorticity (Quo = 0) is used. Thus, the initial disturbance 
with a single mode is 

u(x, Y ,  z ,  0 = U( y )  e, + u’(x, Y ,  z ,  t).  (7.3) 

V: u’(x, y ,  z ,  0) = Q, S(y) e-ioi~(cos4s+sm@z) and Q;(x, y ,  z ,  0) = 0. 

With an analytical solution for the velocity field known for all time and given the 
initial position of a particle, (7.1) can be integrated to find the new position of the 
particle at later time. Since the velocity of the particles depends on both particle 
positions and time, a system of nonlinear non-autonomous first-order differential 
equations results, making an analytical solution virtually impossible to find. On the 
other hand, numerical integration of (7.1) with any given initial condition (7.2) is 
straightforward. A simple Runge-Kutta fourth-order method is used to approximate 
the solution of the system for several thousand particles initially placed in the mixing 
layer. 

7.2.  Two-dimensional planar motion of the mixing layer 
The two-dimensional planar motion of the mixing layer is known to roll up if the 
wavelength of a streamwise periodic disturbance is much larger than the layer 
thickness. In the case of temporal evolution of the mixing layer, a normal mode 
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FIGURE 10. Material particles, $ = 0,  EJO) = 0.01 and do = k8 z 0.64. 

disturbance that is streamwise periodic would grow and lead to the layer roll up in the 
nonlinear regime of the flow evolution. The streamwise wavenumber a. of the normal 
mode for which the disturbance grows at a maximum rate exponentially in time is in 
the range 0 < a, < a,. The particle path technique described above was used by 
Michalke (1965) to illustrate the initial roll-up of the mixing layer due to the growth 
of the normal mode disturbances. The basic velocity profile was taken to be tanhy and 
the velocity field was computed numerically. However, with the neutral wavenumber 
a, = a,, such a disturbance does not grow and it was concluded that roll-up of the 
mixing layer could occur only if the initial wavenumber was in the range of 
amplification. 

It can be recalled that the solution having a streamwise periodic non-normal mode 
disturbance with wavenumber equal to the neutral wavenumber of the normal mode 
the disturbance grows algebraically in time. It will be seen that the evolution of the 
mixing layer using the particle path formulation with algebraic growth and a, = a, also 
leads to roll-up of the layer (figure 10). The initial disturbance kinetic energy is set to 
EK(0) = 0.01. The value was chosen to expedite the process in the same manner as done 
by direct numerical simulations. A smaller initial value for EK(0) gives in the same 
result but is slower in evolution. 

With the initial wavenumber corresponding to the fastest exponential growth, the 
initial roll-up of the mixing layer is illustrated in figure 11. The plots do not show the 
round shape characteristic of concentrated lumps of particles at T = 15 as seen in the 
case of a larger wavenumber (figure 10). This suggests that a nonlinear model of the 
system with the analytical velocity field is not fully correct at large times because the 
velocity field solution is based on an assumption of small disturbances. To see this the 
velocity field is shown in figures 12 and 13. Clearly, disturbance amplitudes are larger 
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FIGURE 11. Material particles, $ = 0, E,(O) = 0.01 and ti, = 0.4. 

than the mean flow at large time (T  = 15), violating the small-amplitude assumption. 
Nevertheless, the implications are strong. 

Although at large time the model equations are not valid because of the small- 
amplitude assumption of the velocity field, the sequence of plots at different times for 
particle positions do show the motion of the evolution of the mixing layer that is valid 
at small time. The periodic disturbance (larger wavenumber than the normal mode) 
that grows algebraically in time has also been demonstrated to trigger the roll-up of the 
mixing layer and is just as efficient as the strongest growing normal mode. 

7 .3 .  Three-dimensional disturbance with oblique modes 
The evolution of particles initially placed at the two interfaces of the piecewise linear 
profile are traced together with the material lines going through all the material 
particles with the same initial positions in x and y and are shown in the top rows of 
figures 14, 15 and 16. The particles are initially placed at the two surfaces y = 1 and 
y = - 1 in the domain - 10 < x < 30 and -5 < z < 25. However, at all T, only the 
particles and lines that are in the box 0 < x < 20, - 5 < y < 5 and 0 < z < 20 are 
actually plotted. 

In all cases, the initial disturbance that grows algebraically in time (a,, = a,) is taken. 
Figure 14(a-c) shows the evolution of the particles for the case of 9 = 0. The particles 
evolve in the two-dimensional planar motion, but are plotted in three dimensions. The 
developed structures are elliptical cylinders with the perpendicular cross-section in the 
(x, z)-plane. These cylinders reveal the spanwise vortices that have no variation in the 
z-direction. The material lines are always straight and parallel to the axes of the 
cylinders for all T. 

The evolution of the particles for the case of 9 = fn is shown by figure 14(d-f). As 
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seen in the graph, none of the material lines at all T has virtually any variation in the 
x-direction. Thus, the particles with the same initial position in x and y moved at 
almost the same speed in the x-direction. This result may be explained as follows. The 
initial disturbance, as well as the velocity field at all time, are independent of the 
streamwise direction. Only the streamwise velocity component grows linearly in T ;  the 
other two components are independent of T. The growth rate of u is proportional to 
the magnitude of the transverse velocity component u which attains its maximum value 
at the transverse position y = 0 and decays exponentially in the y-direction. Consider 
the particles that are initially connected by one of the initial material lines. As some of 
these move in the transverse direction away from one of the interfaces into the internal 
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layer the magnitude of the basic flow decreases but the magnitude of the disturbance 
velocity grows in the same direction as the basic flow. The total streamwise velocity 
component at the new positions in the internal layer is almost the same as that that is 
near the interfaces and those particles that move into one of the external layers because 
the basic flow in the external layers is constant, and u grows slower as the particles 
move away vertically from y = 0. 

Figure 15 (a-c) shows the evolution of the material particles and lines for the case of 
$ = $t. The three-dimensional graphs show that the initial two flat surfaces of the 
material particles evolve into cylindrical structures with the axes in the (x, 2)-plane in 
the direction 45" off the x-axis. Unlike the case of the two-dimensional planar motion 
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# = 0 where the material lines are always straight and parallel to the axes of the 
cylindrical vortices, no material lines in this case lie in any one plane. The evolution is 
affected by the three-dimensionality of the velocity field. 

The developed structure arising from a single mode of the periodic disturbance is a 
row of single oblique vortices. The developed structure arising from two equal and 
opposite oblique modes is more complex. Figure 16(a-c) shows the evolution of the 
material particles for the case of # = in for which the initial condition is 

and 
1 V; y ,  z ,  0) = a,&( y){e-i60(cos$z+sin $2) + e-i80(cosds-sin$z) 

QL(x, y ,  z ,  0 )  = 0. 
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The developed structures are peak-valley surfaces with peaks and valleys alternating. 
The peaks and the valleys are loci of constant z, a distance n/d0 apart. 

Figure 16(d-f) shows the evolution of the material particles and lines for the cases 
when the initial disturbance is the sum of two modes: d ,  = ds, 4 = 0 and do = 2 4 ,  
4 = in. The initial disturbance satisfies 

V~u’(x,y,z,O) = 5206(y)(e-ia~Z+e-iYo”) and Qb(x,y,z,O) = 0. 

The amplitudes of the two modes in the initial disturbance are equal, but the 
wavenumbers for the x-independent mode are twice that of the z-independent mode, 
i.e. yo = 2a,. The developed structure is two undulant surfaces which are periodic in 
the x- and z-directions with wavenumbers d,  and 2 4  respectively. The two surfaces 
have a tendency to evolve into elliptical cylinders with perpendicular cross-sections in 
the (x,y)-plane that wiggle in the z-axis. 

8. 

In 

Symmetric and asymmetric initial conditions 

Fourier space, the solution with the general initial condition is expressed as 
8.1. Solutions in terms of the Green’s function 

y’ = Q, &(a - a o )  6(y - yo) &I ;yo ; 01; 7 ;  n m o )  dy,, 
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FIGURE 18. Velocity field for symmetric uo(y): (a) A = 0.25, (6) A = 1, (c)  A = 4. 

where f ( yo) is a more general variation and G' is the Green's function. After performing 
the full Fourier inversion, the solution will be 

4X,Y,Z,  6 = u&Y,z, CYo)f(Yo)dY,, (8.2) 1: 
where u8 is given by (4.15) or the solution to the initial-value problem with the initial 
condition satisfying 

(8.3) 
Similarly, the transverse vorticity component is expressed as 

J w  

where 52, is the transverse vorticity solution to the initial-value problem with the initial 
condition satisfying (8.3) and arbitrary initial condition 52,(x, y, z, 0) = a,?(x,y,  z). 

The streamwise and spanwise velocity components which are expressed in terms of 
u and 52, become 
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In all cases, the maximum value of v, is taken to be 0.1 and equals 10 % of the basic 
flow magnitude in the external layers; such a value is taken to expedite the temporal 
development and a smaller value ultimately evolves in the same way as this choice. For 
all calculations of the velocity field, the solutions (8.2) and (8.4) are numerically 
evaluated. Since the integrands are smooth and have a single scale, the simplest 
numerical integration method can be used, namely the extended trapezoidal rule. The 
limits of the integration are taken to be f 3 as an approximation to f 00 since the 
functionfly) that was used is approximately zero at IyI > 3.  

8.2. Symmetric transverse structure in v, 
The implicit form of v corresponding to the initial condition (4.1) withf(y) being a top- 
hat function was shown in $4. Here, a family of the symmetric transverse structure for 
the initial value of v is chosen to be a Gaussian centred at y = 0, namely 

The plots of (8.7) in the domain of - 3  < y < 3 for fixed values of O,, do, x and z for 
various value of h are shown in figure 17. In this figure the corresponding functionf(y) 
or the transverse variation of V2v, is also depicted. 

The evolution of the velocity field for two-dimensional planar motion is shown in 
figure 18(a-c) for the wavenumber a, = a, and, in figure 19(a-c), for the wavenumber 
a, = 0.4. 



FIGURE 20. 
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On comparing these fields, it can be seen that the formation of the vortices begins 
sooner for smaller standard deviation, A, for the case a, = a,. However, in the case 
a, = 0.4, the time for the formation of the vortices is insensitive to the variation of A.  

8.3. Asymmetric transverse structure in v, 
A family of the asymmetric transverse structure for the initial value of v is 

v, = v(x, y ,  z ,  0) = i 2 , ( 2 e / ~ ) ~ ’ ~ y  e-v2/A. (8.8) 

The plots of v, for the fixed values of O,, a,, x and z and the corresponding function 
f ( y )  for various values of A are shown in figure 20. 

The evolution of the velocity field for the two-dimensional planar motion is shown 
in figure 21 (a-c) for the wavenumber a, = a, and figure 22(a-c) for wavenumber 
a, = 0.4. Similar results to those in the previous section are apparent. The formation 
of the vortices begins sooner for smaller A for the case a, = a,. In the case a, = 0.4, the 
time for the formation of the vortices is still insensitive to the variation of A. 

From the continuity equation, the asymmetric transverse structure of v, implies a 
symmetric transverse structure of u,. Conversely, the symmetric transverse structure of 
v, in the previous section implies an asymmetric transverse structure of u,. It can be 
seen from the two sets of results for which the initial amplitude of v, has the same 
maximum value and the same A, that the roll-up of the mixing layer for the asymmetric 
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FIGURE 21. Velocity field for asymmetric uo(y): (a) A = 0.25, (b)  A = 1, (c) h = 4. 

uo occurs sooner than that of the symmetric one because the growth rate of the 
disturbance for the asymmetric case is greater in the transient period. 

9. Conclusions 
The complete three-dimensional solution to the initial-value problem that combines 

both the discrete and continuous spectra has been obtained for disturbances in a 
mixing layer. These solutions, which are periodic in the streamwise-spanwise plane, 
represent descriptions of three-dimensional disturbances that contain both exponential 
and algebraic dependence on time. While the asymptotic behaviour of these 
disturbances is dominated by the exponentially growing normal mode, the transient is 
controlled by algebraic growth. In the transient period, the growth rates are 
comparable for all wavenumbers and such growth can lead to strong nonlinearity that 
can cause the breakdown of the flow before normal mode domination. 

Without any assumption on the travelling wave solution, it was shown that the 
application of Squire's theorem to obtain the solution for a three-dimensional problem 
from its corresponding two-dimensional one could be incorrect because the theorem 
does not cover the dynamical behaviour governed by the y-component of the vorticity, 
equation (3.31). For example, if the disturbance is streamwise independent, then v' is 
independent of time and integrating (3.31) for the solution for a, indicates linear 
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growth in time. Thus, for a three-dimensional problem, both (3.30) and (3.31) must be 
considered. Moreover, the theorem is not valid for non-separable disturbances such as 
these. 

From the closed-form solution of the transverse velocity component, the 
exponentially growing normal mode dominates the long-time behaviour. Conse- 
quently, Squire's theorem is applicable in the limit and, with a fixed wavenumber 
magnitude, the oblique angle at values 0 and in gives the maximum and minimum 
growth rates respectively. However, the expressions for the streamwise and spanwise 
velocity components of the periodic disturbances are in terms of the transverse velocity 
and vorticity components as shown in (4.23) and (4.24). The disturbance kinetic energy 
is an integral with integrand that combines both the transverse velocity and vorticity 
components. As the oblique angle increases with a fixed wavenumber magnitude, the 
growth rate of the transverse velocity amplitude decreases but the growth rate of the 
transverse vorticity amplitude increases in the early period of the evolution. Thus, in 
the transient period, the growth rates of the streamwise and spanwise velocity 
amplitudes and the kinetic energy do not have the maximum value when the oblique 
angle equals zero. 

Contrary to Squire's theorem, the energies corresponding to different wavenumbers 
of the periodic disturbance grow at comparable rates in the transient period. In fact, 
in the early period as the oblique angle increases from 0 to in, the growth rate increases 
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(figures 8 and 9). The growth rate of the energy corresponding to the exponentially 
growing mode rapidly increases initially, then rapidly decreases asymptotically to a 
constant value that is equal to the growth rate of the corresponding normal mode. For 
a fixed wavenumber magnitude and oblique angle and during this transient time for 
which the growth rate is rapidly changing, the energy of this disturbance rises to a level 
approximately ten times its initial value. 

The complete closed-form solution given in 94 is purely algebraic when the initial 
disturbance is independent of the streamwise variable (the streamwise velocity 
component is linear in T) ,  which is in agreement with the result of Ellingsen & Palm 
(1975). This solution is also purely algebraic when the initial wavenumber magnitude 
is equal to the cut-off value; exponential growth can exist only if the wavenumber 
magnitude is smaller than the cut-off value. For the two-dimensional problem 
(independent of z )  with planar motion (w = 0), the streamwise and transverse 
disturbance vorticities are conserved but, for the problem that is only independent of 
z with Qyo + 0, the streamwise disturbance vorticity grows linearly in time. 

The sequence of plots at different times for the particle positions reveals that an 
algebraic growth disturbance can also result in the mixing layer evolving to roll up in 
the transient time and is as effective as a growing normal mode. The roll-up of the 
mixing layer occurs for all oblique angles less than in. Although, when the amplitude 
of the disturbance becomes large, the model equations for a particle path are not 
strictly valid, the implications are pronounced. The sequence of plots at different times 
for the particle positions does show the motion of the evolution of the mixing layer 
which is valid at small time. 

When the initial disturbance is a double mode (streamwise independent and 
spanwise independent), the developed structure of the material particles has undulant 
surfaces which are periodic in both the streamwise and the spanwise directions. For this 
case, the two modes grow independently in the linear regime. While the spanwise- 
independent mode triggers the roll-up, the streamwise-independent mode creates the 
wiggling surface in the spanwise direction. This structure is similar to the observations 
of Lasheras & Choi (1 988). In particular, the wiggling surface in the spanwise direction 
depends on the wavenumber of the initial disturbance, and the wiggling interface of the 
mixing layer in the experiment depends on the wavenumber of the indented periodic 
trailing edge of the splitter plate. 

Comparing the two sets of results for the symmetric transverse structure of the initial 
condition uo with the corresponding asymmetric one, the roll-up of the mixing layer for 
the asymmetric uo occurs sooner than for the symmetric one. This happens because the 
growth rate of the disturbance for the asymmetric case is greater in the transient period 
as shown in figures 18-22. It is also very sensitive to three-dimensionality. 

As was suggested by Metcalfe et al. (1987), the transition from laminar to turbulent 
flow in the mixing layer depends significantly on the relative amplitudes of all 
competing disturbances. If a real disturbance has an initial infinitesimal amplitude and 
it can be decomposed into normal modes, then the normal mode with the fastest 
exponential growth rate will dominate the behaviour of the disturbance at large time 
given by classical linear stability theory. On the other hand, if the initial small 
amplitude of the disturbance is finite for which the nonlinear terms are small, then 
nonlinearity can become rapidly significant in the transient time. This nonlinearity may 
cause the laminar-turbulent transition of the flow with all finite-amplitude modes 
responsible for the instability because they all grow rapidly at comparable rates in the 
transient period. The transient growth remains important even with viscosity because 
viscosity has little effect in the early period. The asymptotically growing behaviour of 
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the viscous solution for this flow is virtually identical with the inviscid results (Esch 
1957; Balsa 1987). 

A general solution expressed in terms of the Green’s function found in $ 3  has 
advantages over the normal mode method including : (a)  arbitrary initial disturbances 
can be treated ; (b )  complete behaviour of a three-dimensional disturbance can be 
obtained; (c)  both transient and asymptotic behaviour of a disturbance can be analysed 
in detail once the specific initial disturbance is specified; ( d )  Lagrangian mechanics of 
material particles can be obtained. 

Although the growth rates of the periodic disturbances rapidly increase in the early 
period, it has not been demonstrated whether or not they are the optimal disturbances 
that are most excited in the transient period. Optimal disturbances for the bounded 
shear flows using a similar approach have been investigated by Farrell (1988). The 
large-time behaviour of the disturbance for different wavenumbers has been analysed 
by looking at the exponentially growing term of the disturbance and the behaviour of 
the kinetic energy, but no formal asymptotic analysis is given. On the other hand, such 
behaviour is strongly suggested. 
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